\begin{align*}
\frac{a^2 - b^2}{a^2 + b^2} = \frac{\sin (A - B)}{\sin (A + B)}&\iff\frac{\sin^2A - \sin^2B}{\sin^2A + \sin^2B} = \frac{\sin (A - B)}{\sin (A + B)} \\
&\iff \frac{\sin (A - B)\sin (A + B)}{\sin^2A + \sin^2B} = \frac{\sin (A - B)}{\sin (A + B)} \\
&\iff \sin^2A + \sin^2B = \sin^2(A + B) 或 \sin (A - B) = 0 \\
&\iff \sin^2B = \sin^2(A + B) - \sin^2A 或 A = B \\
&\iff \sin^2B = \sin B\sin (A + B + A) 或 A = B \\
&\iff \sin B = \sin (2A + B) 或 A = B \\
&\iff B + 2A + B = \pi 或 A = B \\
&\iff A + B = \frac\pi2 或 A = B
\end{align*}