\[\int\limits_a^b{\left|{f'\left( x \right)}\right|{\text{d}}x} \geqslant\int\limits_\eta^\xi {\left|{f'\left(x\right)}\right|{\text{d}}x}\geqslant\left|{f\left(\xi\right)-f\left(\eta\right)}\right|\geqslant\left|{f\left(\xi\right)}\right|-\left|{f\left(\eta\right)}\right|\geqslant\left|{f\left(x\right)}\right|-\left|{f\left(\eta\right)}\right|\]
②设 $m = \frac{{a + b}}{2}$,由第一题,
\[\left| {f\left( m \right)} \right| \leqslant \left| {\int\limits_a^b {f\left( x \right){\text{d}}x} } \right| + \int\limits_a^m {f'\left( x \right){\text{d}}x} \]
\[\left| {f\left( m \right)} \right| \leqslant \left| {\int\limits_a^b {f\left( x \right){\text{d}}x} } \right| + \int\limits_m^b {f'\left( x \right){\text{d}}x} \]
相加,\[\left| {f\left( m \right)} \right| \leqslant \left| {\int\limits_a^b {f\left( x \right){\text{d}}x} } \right| + \frac{1}{2}\int\limits_a^b {f'\left( x \right){\text{d}}x} \]