- UID
- 14
- 帖子
- 427
|
2#
发表于 2013-5-10 00:44
1# Karron_
这个问题也不难,我们先证一个等价的问题。
设$f_{n}(x)$在$[a,b]$上可导,且有$M>0$,使得
\[ |f'_{n}(x)|\leq M \qquad (n\in \mathbf{N},a\leq x\leq b) \]
若$f_{n}(x)$在$[a,b]$上逐点收敛于$f(x)$,则必一致收敛。
证明:对$\forall \varepsilon>0$,作$[a,b]$的分划
\[ \Delta:a=x_{0}<x_{1}<\cdots<x_{k}=b,\qquad \text{分割细度$|\Delta|<\frac{\varepsilon}{3M}$}\]
则对于每个$x_{i}$,由于$f_{n}(x)$逐点收敛,故都存在一个对应的$N_{i},(i=0,1,2,\cdots,k)$,当$m,n>N_{i}$时有
\[ |f_{n}(x_{i})-f_{m}(x_{i})|<\frac{\varepsilon}{3}\]
这样,我们可以找到一个$N=\max\{N_{0},N_{1},\cdots,N_{k}\}$,对任意$n,m>N$有
\[ |f_{n}(x_{i})-f_{m}(x_{i})|<\frac{\varepsilon}{3},\qquad (i=0,1,\cdots,k)\]
现在对任意的$x\in[a,b]$,$x$必落入某个分割区间中,不妨设$x_{i}\leq x\leq x_{i+1}$,则当$n,m>N$时,有
\begin{align*}
|f_{n}(x)-f_{m}(x)|&\leq |f_{n}(x)-f_{n}(x_{i})|+|f_{n}(x_{i})-f_{m}(x_{i})|+|f_{m}(x_{i})-f_{m}(x)|\\
&\leq |f'_{n}(c_{1})||x-x_{i}|+|f_{n}(x_{i})-f_{m}(x_{i})|+|f'_{m}(c_{2})||x_{i}-x|\\
&\leq M\cdot\frac{\varepsilon}{3M}+\frac{\varepsilon}{3}+M\cdot\frac{\varepsilon}{3M}=\varepsilon
\end{align*}
故$f_{n}(x)\rightrightarrows f(x) $,现在用替换
\[ f_{n}(x)=S_{n}(x) \]
问题显然成立。
|
Let's solution say the method! |
|